Water Quality Status and Trends in the Clark Fork-Pend Oreille Watershed 1984-2002

Bruce Anderson, John Babcock, and Gary Ingman Land & Water Consulting, Inc. Missoula and Helena, MT

The Clark Fork-Pend Oreille Watershed

- 26,000 mi.² drainage area
- includes Clark Fork of the Columbia River,
 Pend Oreille Lake, Pend Oreille River
- includes 2 EPA Regions, 3 states, 14 counties, several Indian reservations

Tri-State Water Quality Council History & Mission

- Formed in 1993 to address interstate water quality issues in the three-state watershed
- Primary interstate issue is nutrients & eutrophication
- Secondary issue is heavy metals toxicity
- Mission: ..."Citizens, business, industry, government and environmental groups are united"..."to improve water quality"... "through mutual respect, collaboration, science and education."

Tri-State Water Quality Council Management Goals

- Control nuisance algae in the Clark Fork by reducing nutrient concentrations
- Protect Pend Oreille Lake by maintaining or reducing nutrient loading from the Clark Fork R.
- Reduce near-shore eutrophication in Pend Oreille Lake by reducing non-point nutrient loading
- Improve Pend Oreille River water quality through aquatic weed management and tributary nonpoint source controls

Tri-State Water Quality Council Management Plan Elements

- Basin-wide nutrient management plan
- Clark Fork voluntary nutrient reduction plan (TMDL)
- MT-ID Pend Oreille Lake nutrient loading agreement
- Pend Oreille Lake management plan (TMDL)
- Public involvement & education
- Basin-wide monitoring plan

Monitoring Program Goals

Clark Fork River -

- evaluate time trends for nutrient concentrations
- evaluate time trends for periphyton standing crops
- evaluate compliance with mid-summer nutrient concentration targets

Monitoring Program Goals

Pend Oreille Lake -

- estimate annual nutrient loads via Clark Fork River
- evaluate time trends for near-shore periphyton standing crops
- evaluate time trends for Secchi transparency

Pend Oreille River -

 evaluate time trends for nutrient concentrations & fecal coliform bacteria

Water Quality Trends Analysis

- 19-year data set available from Tri-State Council and former MT DEQ monitoring programs
- 10-year evaluation of tri-state management plan
 5-year evaluation of VNRP
- results will be used to evaluate progress & adjust management plan

Clark Fork River Nutrient Trend Detection

Management Goal:	Improve water quality		
Monitoring Goal:	Detect significant trends in nutrient concentrations		
Definition of Water Quality:	Total phosphorus, total nitrogen, soluble reactive phosphorus, total soluble inorganic nitrogen		
Definition of Trend:	50% change in 10-year period at 95% confidence level, 90% power or 40% change at 90% C.L., 80% power		
Statistical Methodology:	Seasonal Kendall with Sen slope estimate		
Statistical Hypothesis:	Ho: No trend exists Ha: Trend exists		
Data Analysis Result:	Conclusions regarding presence of trends; Provide estimate of trend magnitude		
Information Product:	Management goal met when no trend exists, or indicates improvement		

Number of Statistically Significant Parameter/Flow Correlations

	Positive (+)	Negative (-)	% Significant
Total			
Total P	21	0	63%
Total N	13	4	52%
Total Cu	20	0	61%
Total Zn	14	0	42%
Dissolved	C. WICEST		
TSIN	3	11	42%
SRP	14	2	48%
Flow	3	9	36%

Number of Statistically Significant Trends

	Positive (+)	Negative (-)	% Total		
Total					
Total P	1	14	43%		
Total N	0	15	43%		
Total Cu	3	4	20%		
Total Zn	3	5	23%		
Dissolved					
TSIN	14	4	51%		
SRP	2	17	57%		

Clark Fork below Deer Lodge – Total Phosphorus

Highly significant downward trend

Clark Fork below Deer Lodge – Total Nitrogen

Highly significant downward trend

Clark Fork below vs. above Missoula – Total Phophorus

No significant trend was present above Missoula

Clark Fork below vs. above Missoula – Total Nitrogen

Clark Fork below vs. above Missoula – Dissolved Nitrogen

Bitterroot River – Dissolved Nitrogen

Highly significant upward trend

Conclusions - Clark Fork River

- Concentrations for most nutrient variables have declined in response to management actions
- Summer nutrient concentrations are approaching targets but are not yet in compliance at most stations
- Trend slopes suggest P targets will be attained at most stations within a few years
- Soluble N concentrations are increasing in the middle segments of the river in response to development activities

Application of Results – Connecting the Feedback Loop

- Management measures have been effective at improving water quality throughout much of the river
- At the same time, local & regional development activities are offsetting some of these improvements & are compromising the ability to achieve WQ goals
- Basin-wide nutrient management plan assumptions & elements will need to be adjusted to place more emphasis on growth issues
- Results will be used to fine-tune the monitoring program

Some Lessons Learned

- A long-term trends monitoring program applied at the watershed scale can be invaluable in documenting effectiveness of management actions & and in detecting emerging problems early on
- This program has helped the Council to establish trust among stakeholders & neutralize contentious issues
- The program has provided a means to educate basin residents & stakeholders, elicit cooperation, give credit to partners, & demonstrate commitment to downstream neighbors
- Despite the best monitoring design efforts, the answers won't always be cut & dried

